Appendix A.7.4 BD02 Menlough Viaduct

A.7.4

Galway County Council **N6 Galway City Ring Road** Menlough Viaduct

GCOB-4.04-020-010

Issue 4 | 23 October 2017

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 233985

Ove Arup & Partners Ireland Ltd

Arup Arup Corporate House City East Business Park Ballybrit Galway Ireland www.arup.com

ARUP

Document Verification

ARUP

Job title		N6 Galway City Ring Road			Job number 233985	
Document r	ef	GCOB-4.04	-020-010			
Revision	Date	Filename				
Draft 1		Description	First draft			
			Prepared by	Checked by	Approved by	
		Name	Reamonn MacReamoinn	Pat Moore	Eileen McCarthy	
		Signature				
Issue	16 Dec	Filename	GCOB-4.04-020-01	10_Issue.docx	·	
2016		Description	Issue			
			Prepared by	Checked by	Approved by	
		Name	Reamonn MacReamoinn	Pat Moore	Eileen McCarthy	
		Signature				
Issue 2	17 May	Filename	GCOB-4.04-020-010_Menlough Viaduct PDR Issue 2.docx			
	2017	Description	Issue 2			
			Prepared by	Checked by	Approved by	
		Name	Yalda Acar	Pat Moore	Eileen McCarthy	
		Signature	Yaldafen	PM.	lileen Mc Carthy.	
Issue 3	31 Jul	Filename	GCOB-4.04-020-010 Menlough Viaduct PDR Issue 3.docx			
	2017	Description	Issue 3			
			Prepared by	Checked by	Approved by	
		Name	Yalda Acar	Pat Moore	Eileen McCarthy	
		Signature	Y alda fear	PM.		
			Issue Docum	ent Verification with Do	cument 🗸	

Document Verification

Job title		N6 Galway City Ring Road			Job number
			233985		
Document title		Menlough V	Viaduct		File reference
Document	ref	GCOB-4.04	4-020-010		I
Revision	Date	Filename	GCOB-4.04-020-0	10_Menlough Viad	uct PDR I4.docx
Issue 4	23 Oct 2017DescriptionIssue 4				
			Prepared by	Checked by	Approved by
		Name	Yalda Acar	Pat Moore	Eileen McCarthy
		Signature	Yaldafen	AM	Eleen ulbelty
		Filename			
		Description			
			Prepared by	Checked by	Approved by
		Name			
		Signature			
		Filename			
		Description			
			Prepared by	Checked by	Approved by
		Name			
		Signature			
		Filename			
		Description			
			Prepared by	Checked by	Approved by
		Name			
		Signature			
			Issue Docum	ent Verification with	Document 🗸

Contents

			Page
1	Introdu	iction	3
	1.1	Design Brief	3
	1.2	Project Background information	3
	1.3	Previous Studies and their Recommendations	5
2	Site and	l Function	7
	2.1	Site Location	7
	2.2	Function of the Structure and Obstacles Crossed	7
	2.3	Choice of Location	8
	2.4	Site Description and Topography	8
	2.5	Vertical and Horizontal Alignments	8
	2.6	Cross-Sectional Dimensions	9
	2.7	Existing Underground and Overground Services	10
	2.8	Geotechnical Summary	10
	2.9	Hydrogeology Summary	14
	2.10	Ecology Summary	14
	2.11	Archaeological summary	16
	2.12	Environmental Summary	16
	2.13	Sustainability	16
3	Structu	re and Aesthetics	17
	3.1	General Description	17
	3.2	Aesthetic Considerations	17
	3.3	Proposals for the Recommended Structure	17
	3.4	Construction and Buildability	20
4	Safety		22
	4.1	Traffic Management During Construction Including Land Temporary Diversions	l for 22
	4.2	Safety During Construction	22
	4.3	Safety in use	22
	4.4	Lighting	22
5	Cost		23
	5.1	Budget Estimate in Current Year, Including Whole Life Cost	23
6	Design	Assessment Criteria	24
	6.1	Normal Loading	24
	6.2	Abnormal Loading	24

	6.3	Footway Live Loading	24
	6.4	Provision for Exceptional Abnormal Loads	24
	6.5	Any Special Loading not Covered Above	24
	6.6	Heavy or High Load Route Requirements Being Made to Preserve Route	24
	6.7	Minimum Headroom Provided	24
	6.8	Authorities Consulted and any Special Conditions Required	125
7	Ground	Conditions	26
	7.1	Geotechnical Compatibility with Proposed Foundation Design	26
8	Drawing	s and Documents	27
	8.1	List of all Documents Accompanying the Submission	27

Appendices

Appendix A

Drawings

Appendix B

Geotechnical Factual Report

Appendix C

Constructability Report

1 Introduction

1.1 Design Brief

Galway County Council, Galway City Council, Transport Infrastructure Ireland (TII) (formerly NRA)¹ and the National Transport Authority are collaborating to develop a solution to the existing transportation issues in Galway City and its environs. The solution will include a smart mobility component, public transport component and a road component. The N6 Galway City Ring Road (N6 GCRR) is the road component.

As part of the N6 GCRR there are a number of structures envisaged. This report presents the preliminary design for the Menlough Viaduct (Structure S10/01) in accordance with the guidelines detailed within TII DN-STR-03001 (formally NRA BD02).

1.2 Project Background information

The N6 Galway City Outer Bypass, an earlier scheme, was previously developed and submitted to An Bord Pleanála (ABP) for approval on 1 December 2006. A brief summary of its history is outlined below.

On 28 November 2008, ABP delivered its decision in respect of the 2006 GCOB. ABP considered that the need for an outer bypass of Galway City connecting the existing N6 on the east to the R336 Coast Road on the west as an essential part of the strategic transport network of the Galway area had been established.

ABP granted approval for the eastern part of the scheme, the section from the N59 Moycullen Road east to the existing N6, inclusive of both junctions at the N59 Moycullen Road and the existing N6. In its decision, ABP noted its consideration of all data presented and granted approval as it considered that the part of the road development being approved would be an appropriate solution to the identified traffic needs of the city and surrounding area. ABP noted that there would be a localised severe impact on the Lough Corrib candidate Special Area of Conservation (cSAC)².

However, ABP was not satisfied with the western section of scheme between the N59 Moycullen Road and R336 Coast Road which passed through Tonabrocky Bog. Tonabrocky Bog is:

- part of the Moycullen Bogs Natural Heritage Area (NHA)
- an active Blanket bog listed as an priority habitat in Annex I of the EU Habitats Directive

GCOB-4.04-020-010 | Issue 4 | 23 October 2017

¹ The Minister for Transport, Tourism and Sport signed the order for the merger of the National Roads Authority (NRA) with the Railway Procurement Agency (RPA) to establish a single new entity called Transport Infrastructure Ireland (TII). The National Roads Authority is known as Transport Infrastructure Ireland (TII) since 1 August 2015.

² Reference ABP decision 07.ER.2056

J:233000/233965-00/4. INTERNAL/4-04 REPORTS4-04-03 INFRASTRUCTURE/20. BRIDGES/7. MENLOUGH VIADUCT/PDR/ISSUE 4/GCOB-4.04-020-010_MENLOUGH VIADUCT PDR I4.DOCX

• the site of a population of Slender cotton grass which is a legally protected and vulnerable species

ABP refused permission for the western section of the scheme between the N59 Moycullen Road and R336 Coast Road on the basis that this part of the road development would not be in accordance with the preservation of the Tonabrocky Bog habitat given the potential for significant adverse effects on the environment and that less damaging alternatives may be available³.

An application was made by a third party to the High Court seeking leave to issue judicial review proceedings against the ABP decision which granted approval of the eastern section of the 2006 GCOB under Article 6(3) of the Habitats Directive (92/43/EEC), as amended. The basis for the request for a review was that ABP had erred in its interpretation of Article 6 of the Habitats Directive (92/43/EEC), as amended, in arriving at the conclusion that the effect of the 2006 GCOB road scheme on the Lough Corrib cSAC designated site would not constitute an adverse effect on the integrity of the site.

The High Court undertook a judicial review of the ABP decision. The High Court decision of 9 October 2009 upheld ABPs decision to approve the eastern part of the scheme. On 6 November 2009, the third party was granted leave to appeal to the Supreme Court against the High Court decision of 9 October 2009. The Supreme Court sought the opinion of the Court of Justice of the European Union (CJEU) on an interpretation of the Habitats Directive.

The opinion of the CJEU was delivered on the 11 April 2013 (Case C-258/11). The opinion concluded on two significant points:

- The 2006 GCOB would have an adverse effect on the integrity of the Lough Corrib cSAC due to the removal of 1.47ha of Limestone pavement (a habitat type for which the cSAC was selected)
- Given that the 2006 GCOB would have an adverse effect on the integrity of the cSAC, the proposed scheme could not be authorised under Article 6(3) of the Habitats Directive. It could only be authorised under Article 6(4) of the Habitats Directive

The CJEU opinion (i.e. Case C-258/11) established that the loss of a relatively small area of Priority Annex I habitat, where it is a habitat for which the Lough Corrib cSAC is selected, would adversely affect the integrity of the Lough Corrib cSAC and that the provisions of Article 6(4) must apply in granting consent for the project i.e.

6(4) "If, in spite of a negative assessment of the implications for the site and in the absence of alternative solutions, a plan or project must nevertheless be carried out for imperative reasons of overriding public interest, including those of a social or economic nature, the Member State shall take all compensatory measures necessary to ensure that the overall coherence of Natura 2000 is protected. It shall inform the Commission of the compensatory measures adopted".

Following receipt of the CJEU opinion, the Supreme Court quashed the earlier ABP decision to grant approval of the eastern section of the 2006 GCOB under Article 6(3) of the Habitats Directive, as amended.

GCOB-4.04-020-010 | Issue 4 | 23 October 2017

As the decision of the Supreme Court was that the original 2006 GCOB scheme could not be granted approval per Article 6(3) of the Habitats Directive, the next recourse to secure planning was to advance the scheme under Article 6(4) of the Habitats Directive. Having reviewed the requirements of Article 6(4), it was decided to reassess the work to date to ensure that all possible alternatives were investigated in advance of proceeding under Article 6(4). Therefore, the process of developing a transportation solution for Galway City and its environs had to recommence from the start at Phase 1, feasibility and concept stage, to ensure that all possible alternatives were fully investigated.

1.3 Previous Studies and their Recommendations

Following on from the initial feasibility studies, a suitable scheme study area was determined. Thereafter the constraints study and route selection process commenced.

Key constraints were identified and examined. These included:

- The physical form of the city with the limited space available between Lough Corrib and Galway Bay
- Established communities, commercial and educational facilities
- Natura 2000 designated sites and Natural Heritage Areas
- Sites of significant architectural and cultural heritage

Taking cognisance of the judgement of the 2006 GCOB scheme, the Lough Corrib candidate Special Area of Conservation and the key constraints including those listed above, Route Options were developed for further assessment. These options comprised on-line options including an upgrade of existing infrastructure, partial on-line/off-line options and new construction off-line. These options were developed and agreed with TII and refined following public consultation and further studies.

A systematic assessment of these options was undertaken which led to the selection of the Emerging Preferred Route Corridor (EPRC) for the road component and this was published in May 2015. Full details of the route option selection process are outlined in the Route Selection Report for the N6 Galway City Transport Project.

Previous studies and documents relevant to this Preliminary Design Report are listed below.

- Galway County Council. Project Brief. Phase 1, Scheme Concept and Feasibility Studies (REF/14/11222, 2 May 2015).
- Galway County Council. Project Brief. Phase 2, Route Selection (REF/14/11222, 6 November 2015).
- GCOB-4.04-009 Route Selection Report, Issue 1, March 2016
- Galway Transport Strategy, An Integrated Transport Management Programme for Galway City and environs, Technical Report, September 2016

• GCOB-4.04-020-006, Menlough Viaduct Options Report, Issue 1, 11/10/2016

2 Site and Function

2.1 Site Location

The Menlough Viaduct (Figure 2.1) is located in the townland of Menlough, to the north of Galway City, on the EPRC for the N6 GCRR, between the River Corrib crossing to the west and Lackagh Tunnel to the east.

Figure 2.1: Menlough Viaduct Site Location

2.2 Function of the Structure and Obstacles Crossed

The purpose of the Menlough Viaduct is as follows:

- Elevate the proposed N6 GCRR above Limestone pavement, which is contiguous with and of similar quality to the Limestone pavement within the defined boundary of the Lough Corrib cSAC
- Cross over and maintain a Turlough feature
- Minimise the impact of the proposed road development on the area of priority Annex I habitat and Turlough feature during the construction and operational phases
- Facilitate wildlife movements (birds, bats (including the Lesser horseshoe bat) and mammals) by providing appropriate clearance and permeability
- Maintain adequate vehicular headroom over the local road in accordance with DN-GEO-03036 (Cross Sections and Headroom)

2.3 Choice of Location

An extensive constrains and route selection study was carried out for the proposed road development and its findings are presented in the Route Selection Report (GCOB-4.04-009). The EPRC was identified through a systematic assessment of the various route options with respect to the different constraints. The design of the N6 GCRR within the EPRC requires a crossing of the Limestone pavement and Turlough feature at the proposed location.

2.4 Site Description and Topography

It is located in a rural environment (**Figure 2.2**) and the terrain is undulating with rocky outcrops, local depressions and adjacent to the Lough Corrib candidate Special Area of Conservation (cSAC) to the south. In addition, the proposed road development is in the vicinity of a Turlough feature.

Given the exposed location, protection to wind susceptible vehicles may be necessary. An assessment of the wind climate at the Menlough Viaduct Bridge and an estimation of benefit to traffic from protection measures (windshields) is recommended at the next stage of design development

Figure 2.2: Menlough Viaduct Site Terrain

2.5 Vertical and Horizontal Alignments

At the viaduct location the mainline has a horizontal curvature, with a radius of 1020m in the western part and transitioning to a radius of 1440m in the eastern portion of the bridge. Due to the curvature, widening of the bridge is necessary to allow positioning of parapets outside the forward sightline stopping distance envelope. The additional widening needed results in a width of approximately 25.3m from back of verge on the northern side to back of verge on the southern side. The alignment also has a super-elevation of between 3.5% and 2.5% along the length of the bridge. This results in a bridge structure which is relatively wide

for a standard dual carriageway. The vertical and horizontal alignments of the N6 GCRR and Bóthar Nua are given in **Table 2.1**.

	N6 G	CRR	Bóthar Nua		
Name of Structure	Vertical Alignment	Horizontal Alignment	Vertical Alignment	Horizontal Alignment	
Menlough Viaduct	Crest Curve R=10000m	R=1020m transition for R=1440m	Crest Curve R=2000m	R=180m	

Table 2.1: Vertical and horizontal alignments.

2.6 Cross-Sectional Dimensions

The proposed cross section of the bridge deck is given in drawing **GCOB-D-ST-S10-01-002** and summarised in **Table 2.2** below.

Table 2.2: Dimensions on Bridge Deck (all Dimensions Measured Perpendicular to the Mainline)

Name of Structure	Carriageway	Verge [1]	Verge [1]	Parapet	Parapet
	Width [3]	Width (m)	Width (m)	width (m)	width (m)
	(m)	- Left [2]	- Right [2]	[Left]	[Right]
Menlough Viaduct	19.3 – 21.1	0.6	3.6	0.5	0.5

[1] The width of the verge includes any additional requirements due to sightline visibility.

[2] When considered in the direction of increasing chainage.

[3] Carriageway width measures from outer edge of hardshoulders (includes central reserve)

Due to the overall length of the bridge, (circa 320m), a reduced hard shoulder, from 2.5m to 0.5m is applied along the length of the structure, excluding any over widening necessary for forward stopping distances.

2.7 Existing Underground and Overground Services

All the utility providers have been consulted during the preliminary design process. The existing services in the vicinity of the proposed structures are outlined in **Table 2.3** below.

Table 2.3: Existing Services

Name of Structure	Existing Services	
Menlough Viaduct	ESB MV/LV Overhead line (will be diverted and existing line decommissioned as part of the design proposals), SSE Aircricity	
Menlough Viaduct	Eir Overhead line (will be diverted underground and existing line decommissioned as part of the design proposals)	

2.8 Geotechnical Summary

Based on available information, the ground conditions at the structure consist of shallow or outcropping rock in the form of Limestone pavement.

Isolated areas of soft to firm cohesive glacial till are also present. The underlying limestone rock is medium strong to very strong with frequent discontinuities.

The assessment of the geology, ground conditions and geotechnical aspects of the design and construction of the proposed road development at Menlough Viaduct is based on the following information:

- The proposed development boundary
- The proposed vertical and horizontal alignment
- The available ground investigation information

The ground conditions along the proposed road development were determined using various sources of information including historic data, photographic evidence, observations from site walkovers, intrusive and non-intrusive site investigations, laboratory testing and on site investigation monitoring.

A conservative geotechnical design approach has been adopted for this assessment. In the event that supplementary information is made available the information will be assessed and the results of the assessment may lead to a more efficient design solution.

2.8.1 Ground Investigations

Ground investigations were conducted at the viaduct location and in the immediate vicinity as part of the 2006 Galway City Outer Bypass (2006, GCOB) preliminary investigation in 2006 and the N6 Galway City Transport Project (GCTP) Phase III ground investigation in 2016. These ground investigations included both intrusive and non-intrusive investigations, which consisted of:

- Four rotary coreholes
- One open holed corehole
- One cable percussive borehole
- Four trial pits
- One 2D resistivity profile
- One seismic refraction profile

Ground investigation within 50m of the structure extents were only considered for establishing the ground conditions. The plan location of the ground investigation in the vicinity of the structure is provided in **Figure 2.3**.

Figure 2.3: Plan View of Ground Investigation in the Vicinity of the Viaduct

2.8.2 Topography

The topography at the viaduct footprint consists of undulating terrain, ranging from +24mOD in the centre of the structure location to as low as +9mOD towards the west of the structure footprint.

2.8.3 Superficial Deposits

Across the footprint of the structure, the overburden thickness, to the top of weathered rock, ranges from outcropping at the surface (0.0mBGL) to 3.0m below ground level (BGL). Where superficial deposits are encountered the material is a cohesive glacial till derived from limestone.

The exploratory logs classify the overburden material as a sandy slightly gravelly silt. However, an evaluation of the atterberg limits indicates that the cohesive till behaves as a clay. The particle size distributions results show that the material tested ranges from a well graded till to a very fine till.

Where superficial deposits are encountered in intrusive investigation the material is described as soft to stiff, with the softer deposits typically present within the upper 1.0m to 1.5m of overburden.

2.8.4 Solid Geology

The bedrock formation at the structure location is undifferentiated Visean Limestone of the Lower Carboniferous Age.

Weathered zones between the superficial deposits and the bedrock, range in thickness up to a maximum of 1.1m, as observed in the exploratory logs. Figure 2.4 shows the variation of the rockhead as per the non-intrusive investigation.

Figure 2.4: Profile of Ground Information Along the Centreline

The rockhead is found to be either outcropping in some areas, as an Annex I habitat consisting of Limestone pavement, or typically up to 4.1m below ground level, in accordance with available intrusive investigation (see line A in the above figure). The geophysical investigation indicates that rockhead could drop to 6.1m below ground level in some isolated areas (see line B in the above figure). The rock is described as medium strong to very strong, thick to thinly bedded, locally

fossiliferous, slightly weathered with widely to medium spaced discontinuities and clay filled fractures.

Non intact zones were encountered in some of the exploratory coreholes, beginning at rockhead and occurring throughout the core logs, sometimes every 1.0m. They are typically 0.1 to 0.2m in thickness. The apertures are described as tight to partly open, with very thin brown clay smearing. Other fractures are described as clay filled and dissolution features are described as common. Dips are typically described as 20 degrees to locally 40 to 80 degrees.

Rock strength testing was assessed from the available coreholes. In accordance with Franklin et al (1971), the rock was found to be weak to strong and will require blasting to loosen or fracture.

2.8.5 Karst

The limestone is susceptible to karstification. A combination of surface features and sub-surface geophysical anomalies were encountered within the structure footprint.

A Turlough has been identified within the footprint of the structure, north of Bóthar Nua, at Ch. 10+330. The Turlough forms a northwest to southeast elongated basin, which floods with groundwater each winter. Resistivity surveys undertaken show that the base of the Turlough has low resistivity, indicating a zone of potential karst. The Turlough forms part of the groundwater catchment that drains to Coolagh Lakes. For more information, refer to **Section 2.9**. Both the extent of the Annex I habitat and the Turlough are presented in **Figure 2.5**.

Figure 2.5: Plan of Annex I Habitat and Turlough

On the western extent of the Annex I habitat, from Ch. 10+150 to 10+200, a zone of low resistivity is observed in the geophysical survey. The drop in resistivity suggests the possibility of karst activity in the underlying limestone.

East of the Annex I habitat, from approximately Ch. 10+240 to 10+280, an anomaly was observed in the geophysical survey. A section of indicative clean limestone exists for approximately 10m between the ground surface and the anomaly. However, the geophysical survey provides only a limited understanding of the vertical and horizontal extent of the anomaly.

Due to the range of karst related features and anomalies encountered, coupled with the existence of calcite veining, non-intact zones and solution weathering, the karst activity is indicated to be high throughout the structure area.

2.9 Hydrogeology Summary

The Turlough feature (karst reference K31) crossed by the Menlough viaduct is considered a groundwater receptor as the seasonal fluctuation in the pond level is a consequence of groundwater levels in the surrounding aquifer. The Turlough is a depression in the topography and the base of the feature lies below the peak groundwater level but above the low groundwater level, so that characteristically the Turlough floods during winter and is dry during summer. Peak flood levels vary annually depending on the quantity or rainfall and groundwater level fluctuations.

The turlough is spanned by the Menlough viaduct. However, there is potential for groundwater flow paths, at or near the proposed bridge foundations, to be impacted during construction by reducing the capacity of flow paths to or from the Turlough, which could have an impact on the Turlough but also Coolagh Lakes (part of the Lough Corrib cSAC), which are fed from the Turlough catchment. In order to mitigate any potential negative impacts during the construction or in the long term, constraints will be imposed with respect to the construction of the foundations, as described in **Section 3.4**.

2.10 Ecology Summary

Due to the presence of priority Annex I habitats (Limestone pavement and Turlough) the design and construction of the Menlough Viaduct seeks to minimise the impact both during the construction and operational phase of the proposed road development. As such an elevated structure with an overall length of approximately 320m is proposed (Figure 2.6). To the west of the viaduct, small areas of Limestone pavement will be preserved using a culvert type structure within the embankment for the proposed road development.

Figure 2.6: Location of Menlough Viaduct and surrounding ecological habitats

Consideration was given to the position and extent of the support locations for the viaduct, in order to reduce the amount of permanent removal of the priority Annex I habitat. The proposed viaduct will result in shading, both of light and of water, to the local environment beneath the structure as illustrated in **Figure 2.7** below. These potential impacts are assessed in the Environmental Impact Statement for the proposed road development.

Below the bridge, movements of the bats including the Lesser horseshoe bat is facilitated. A minimum clearance of 2.5m is desired with greater clearance being preferred. A Limestone pavement protection system will be put in place for the construction of the viaduct be in accordance with the Menlough Viaduct Construction Report (GCOB-4.03-6.1.74-001 Menlough Viaduct Construction Issue 2) in Appendix C.

Figure 2.7: Shading under bridge deck

2.11 Archaeological summary

The Menlough Viaduct does not directly impact any known archaeological or cultural heritage sites. Archaeological and cultural heritage sites in the vicinity of the viaduct are listed in **Table 2.4** below.

 Table 2.4: Sites of Archaeological and Cultural Heritage merit located in the vicinity of the Menlough Viaduct

CH No.	Townland:	Description:	Approx. Ch.	Dist. from proposed road development
CH 50	Mionlach	Possible circular feature (2006 EIS)	10+375	56m south
CH 51	Mionlach	Possible boulder of archaeological potential (2006 EIS)	10+500	0m

2.12 Environmental Summary

For further details on the environmental constraints in the vicinity of the Menlough Viaduct refer to the Environmental Impact Assessment Report for the proposed road development.

2.13 Sustainability

Typically concrete is selected as the primary structural material. Concrete has a high durability performance and requires little maintenance during the design life (120yrs), where the product is appropriately specified and executed. Portland cement replacements such as ground granulated blast-furnace slag (GGBS) will be used where appropriate.

The continuous concrete deck superstructure minimises the number of movement joints in the deck. This helps reduce the inspection and maintenance requirements compared to simple supported bridge deck spans.

All structures can be readily demolished at the end of the service life of the bridge, and much of the structural materials (concrete, steel etc.) can be recycled and reused.

3 Structure and Aesthetics

3.1 General Description

The total length of the bridge is governed by the area of priority Annex I habitat. The bridge has a total length of approximately 320m, and the proposed road development is on embankment on both approaches to the bridge. To the west of the bridge, retaining structures are provided on the approach embankment to prevent encroachment of the embankment into the Lough Corrib cSAC.

3.2 Aesthetic Considerations

The topography is steeply undulating, with areas of Limestone pavement, scrubland and pockets of thick vegetation and a Turlough (Figure 3.1). Apart from the local roads (Bóthar Nua and Sean Bóthar) there is limited public access to this area.

Figure 3.1: Aerial Photograph at Proposed Menlough Viaduct Location

Due to the hilly landscape and dense vegetation, the visual impact of the bridge is relatively low. The most significant impression will be at the crossing of Bóthar Nua below the viaduct at the western most span. The bridge consists of eight spans with a similar span length of around 40m. This gives the bridge a sense of rhythm and regularity. With the exception of the high point near Ch. 10+200, the bridge provides a good depth to clearance ratio (typically around 0.4), providing good visual permeability. The bridge deck is wide, with short to medium length cantilevers, varying between 0.8m and 1.15m. The substructure elements are envisaged to be of conventional concrete construction, of standard proportions of a structure of this scale.

3.3 Proposals for the Recommended Structure

The proposed Menlough Viaduct consists of a 320m, 8-span continuous bridge deck. The superstructure will be supported on bearings at some locations and fully integral at other support locations. The distance between the soffit of the superstructure and the ground level varies. A minimum clearance of approximately 1.5m occurs at the location of the high point in the rock outcropping on the western side of the structure.

The bridge deck superstructure will consist of prefabricated precast prestressed beams with a cast in-situ concrete deck slab.

The substructure will consist of conventional reinforced concrete piers at intermediate supports while the reinforced concrete skeletal abutments within reinforced earth walls will be provided at the end supports. The position of the substructure and foundations will minimise the impact on the priority Annex I habitats. No substructure supports are proposed within the extents of the Turlough.

3.3.1 Proposed Category

The Menlough Viaduct is a Category 3 structure in accordance with DN-STR-03001 (TII BD2/09).

3.3.2 Span Arrangements

The viaduct contains 8 spans, with a typical length of approximately 40m. The proposed span lengths and configuration has been selected to reduce the impact of the substructure and foundations on the Limestone pavement.

3.3.3 Approaches Including Run-On Arrangements

The approach embankments will be constructed using a compacted acceptable material with Clause 6N material behind end walls.

3.3.4 Substructure

The reinforced concrete abutments will be founded on reinforced concrete columns on pad footings. A reinforced earth wall is proposed to mask the substructure at each of the abutments.

The precast concrete beams will be supported on a downstand beam on bearings situated on within the abutments. Abutment galleries will be provided for the inspection and maintenance of bearings and movement joints.

At the intermediate supports, the superstructure will be supported on a series of columns. At the central support locations, the superstructure will be made integral with the substructure via a concrete crosshead and diaphragm; towards the end supports, bearings will be provided at the top of the piers. To ensure safety during construction, where tall slender beams are used, permanent downstand beams on to which the beams are to be landed are to be incorporated into the design. The appropriate temporary restraint measures are to be provided at the ends of the beam to prevent any instability during construction.

The construction of the Menlough Viaduct shall take into consideration the Annex 1 habitat, namely the Limestone pavement and the Turlough. Site access, enabling works, construction of a Limestone pavement protection system, viaduct construction and completion of the works shall be in accordance with the Menlough Viaduct Construction Report (GCOB-4.03-6.1.74-001 Menlough Viaduct Construction Issue 4) given in Appendix C.

Access to the intermediate support foundation locations will be from the local road network, with appropriate temporary access routes. Access to the abutment foundations will be available from the mainline construction site on both approaches to the viaduct.

3.3.5 Foundation Type

The bridge foundations will consists of foundation pads situated on weathered rock, competent rock or soil. Any areas of soft soil will require excavation and replacement with suitable upfill.

The size of the foundations will be kept as small as possible and the depth of the foundation should be kept close to existing ground level, in order to reduce the extent of excavation at and near the priority Annex I habitats. Alternatively pile foundations with a small pilecap footprint can be adopted.

3.3.6 Superstructure

The bridge superstructure will consist of prefabricated precast prestressed beams (SY6) and insitu concrete deck slab.

3.3.7 Articulation Arrangements, Joints and Bearings

The bridge deck superstructure will be continuous. It will be supported on bearings at the abutments and at the intermediate supports near the abutments. At support gridline 5, 6 and 7 an integral connection between the superstructure and substructure is envisaged.

At gridlines 1, 2, 3, 4, 8 and 9, a pot bearing is proposed for each pair of beams, and located above a substructure column. The all pot bearings will permit free movement in the longitudinal direction, and one pot bearing per support will be guided transversely.

Type 6 expansion joints are proposed at either end of the structure. The estimated movement range at the west abutment is approximately 230mm; and at the east abutment approximately 100mm.

3.3.8 Parapet

Parapet type will be 1250mm high H2-W4, with mesh infill. The approach and departure safety barrier and transitions will be H2 containment.

3.3.9 Waterproofing

Bridge deck waterproofing shall be spray applied, and shall be in accordance with the requirements of BD47/99 and TII DN-STR-03012.

Two coats of epoxy resin waterproofing paint shall be applied to buried concrete surfaces, in accordance with TII CC-SPW-02000.

All exposed concrete will be treated with a surface applied hydrophobic pore lining impregnating material, in accordance with TII DN-STR-03012 and TII CC-SPW-01700.

3.3.10 Inspection and Maintenance

The bridge deck superstructure is continuous. The deck will be supported on bearings at intermediate supports and abutments. Movement joints are proposed at the abutments at either end of the viaduct. Inspection galleries will be provided in the abutments for the inspection of bearings and movement joints. Access to the inspection galleries is envisaged from the N6 GCRR above. For the span between Gridline 1 and 2, access to the bridge soffit will be from the local road below and will require local diversions and a mobile elevated work platform for access purposes.

In the areas of Limestone pavement, access for inspection and maintenance of the structure below deck is expected to be undertaken using under-bridge inspection equipment, supported from the bridge deck.

Waterproofing systems, joints, parapets etc. shall be designed for Working Life Category 2 (replaceable structural parts, up to 50 years design working life).

All other elements of the structure shall be designed for Working Life Category 5 (≥120 years design working life).

3.4 Construction and Buildability

Where tall and slender precast beams are used, such as SY beams, the appropriate measures to ensure stability during lifting and concreting of the deck are necessary. This should include the use of permanent drop-heads at the support locations and the necessary temporary works to restrain the beams rotation at the ends. The temporary works are to use the permanent pier as the supporting structure, and not the ground below.

Given the environmentally sensitive location of the bridge, the rural setting and general accessibility to the site, the construction method is an important consideration in the selection of the bridge type.

At locations where there is Limestone pavement, it is expected that construction may be undertaken from ground level, with the appropriate mitigation and protection measures during the construction works. The construction of the Menlough Viaduct shall take into consideration the Annex 1 habitat, namely the Limestone pavement and the Turlough. Site access, enabling works, construction of the Limestone pavement protection system, viaduct construction and completion of the works shall be in accordance with the Menlough Viaduct Construction Report (GCOB-4.03-6.1.74-001 Menlough Viaduct Construction I2) given in Appendix C. Due to the sensitive hydrogeological location, construction of the viaduct foundations will require specific requirements to be satisfied. Pouring of the concrete to foundations will only be undertaken when the excavation has been inspected by a qualified hydrogeologist. Inspection of the full depth and extent of the excavation will be undertaken to identify if any significant flow paths, such as the karst enhancement of the bedrock permeability, are present. If no significant flow paths are present then the pouring of concrete can commence. If significant pathways are present then impacts which may arise from flow along these pathways shall be mitigated against prior to pouring, by installing a high permeability zone to replace the pathways which would be removed by the foundations. The design of the mitigation measures shall be approved by a qualified hydrogeologist to confirm that no poured concrete will enter the aquifer.

In addition, no pumping or dewatering will be permitted to be undertaken for the construction of the Menlough Viaduct. No construction works will take place directly within the extents of the Turlough. Where in situ concrete is used for the superstructure, it is expected that a temporary bridging structure would be built over the Turlough to permit construction from below the proposed deck. For construction methods using prefabricated elements, the lifting of these elements above the Turlough will be undertaken using lifting equipment located at a suitable distance from the Turlough.

At the western end span, temporary traffic diversions / road closures are necessary to permit construction over the local road. Again, either temporary supports of lifting of prefabricated elements is expect at this location.

4 Safety

4.1 Traffic Management During Construction Including Land for Temporary Diversions

Detailed traffic management proposals will be developed at detail design stage by the appointed Contractor in consultation with their Designers and the consent for the temporary traffic diversions/road closures will be sought from the appropriate authority.

4.2 Safety During Construction

The Designer will take account of the General Principles of Prevention, as specified in the Schedule 3 of the Safety, Health and Welfare at Work Act 2005, liaise with the Project Supervisor appointed by the Client for the Design Process and the Project Supervisor appointed for the Construction Stage and carry out all other duties as required by Clause 15 of the Safety, Health and Welfare at Work (Construction) Regulations 2013 (S.I. No. 291 of 2013).

The Project Supervisor for the Design Process will comply with all the requirements outlined in Clauses 11, 12, 13 & 14 of the Safety, Health and Welfare at Work (Construction) Regulations 2013 (S.I. No. 291 of 2013).

4.3 Safety in use

Parapets and safety barriers will be provided across the length of the structure and on the approach to, and departure from, the structure.

The Menlough Viaduct will be on a motorway designated route. As a result there will be restrictions on the permitted users (no pedestrians, cyclists etc.).

The bearings will require access for inspection and maintenance. At the intermediate supports, due to the environmentally sensitive area and restricted access below the bridge, inspection and maintenance of the bearings is expected to be undertaken using specialised under-bridge inspection equipment supported from the bride deck.

At the abutments, access to the bearings and the expansion joints for inspection and maintenance is provided via the abutment gallery.

The potential operational issues associated with wind effects on high sided vehicles is to be assessed and where this is found to be an issue, the provision of wind shielding may be necessary.

4.4 Lighting

There is no road lighting proposed in the area of the Menlough Viaduct.

5 Cost

5.1 Budget Estimate in Current Year, Including Whole Life Cost

The cost estimates for the Menlough Viaduct has been prepared using typical cost per square metre rates for the envisaged bridge configuration, span arrangements, materials, construction methodology and maintenance requirements (**Table 5.1** and **Table 5.2**).

Table 5.1: Basis of Cost Estimate

Construction Options Considered	Estimated Rate (€/m²)	
	Lower	Upper
Precast prestressed beams lifted into place and made integral with reinforced concrete deck	1975	2150

The cost of the bridge is highly dependent on the construction methodology and the temporary works necessary to build the bridge, in addition to the form of construction.

Description	Cost [Million Euros] (Excl. VAT)	
Menlough Viaduct	16.5M to 18.0M	

6 Design Assessment Criteria

6.1 Normal Loading

Permanent Actions in accordance with IS EN 1991-1-1:2002 and the associated National Annex.

The structure will be designed for Load Models LM1 and LM2 in accordance with IS EN 1991-2:2003 and the associated National Annex.

6.2 Abnormal Loading

Load Model 3 up to and including SV196 (where applicable) will be considered in accordance with IS EN 1991-2:2003 and the associated National Annex.

6.3 Footway Live Loading

Where applicable, a footway loading shall be in accordance with Clause 5.3.2.1 of IS EN 1991-2:2003. A nominal qfk = 5kN/m² will be adopted.

6.4 **Provision for Exceptional Abnormal Loads**

No exceptional abnormal loads are proposed.

6.5 Any Special Loading not Covered Above

Not applicable.

6.6 Heavy or High Load Route Requirements Being Made to Preserve Route

Not applicable.

6.7 Minimum Headroom Provided

The minimum headroom clearance for underbridge structures will be 5.3m in accordance with TII DN-GEO-03036 (Cross Sections and Headroom).

6.8 Authorities Consulted and any Special Conditions Required

Consultation with relevant authorities is on-going. The following groups have been consulted as part of the development of the proposed N6 GCRR:

- Transport Infrastructure Ireland (TII)
- Galway County Council (GCoC)
- Galway City Council (GCiC)
- Land and home owners

7 Ground Conditions

The general ground conditions consist of areas of soft to stiff cohesive glacial till underlain by limestone or outcropping Limestone pavement. The rock is medium strong with medium to closely spaced discontinuities and non-intact zones. Refer to **Section 2.8** for further information.

7.1 Geotechnical Compatibility with Proposed Foundation Design

The foundation types proposed for the viaduct are presented in Section 3.3.5.

There are nine footing locations (including piers and abutments) for the Menlough Viaduct. The footings for the viaduct are located over areas of cohesive till and Limestone pavement. Any areas of shallow overburden will require excavation and replacement with suitable upfill, thus reducing the potential for differential settlement between footings. To reduce the extent of excavation at and near the Annex I habitats, the size of the foundations will be kept to a minimum and the depth of the foundation will be kept close to existing ground level. Alternatively pile foundations with a pilecap could be adopted.

The foundations discussed below are in areas of note:

- The foundation located at Ch. 10+180 (Pier at Gridline 3) falls on a zone of low resistivity according to the geophysical survey. The drop in resistivity suggests the possibility of softer deposits and potential karst activity.
- The foundation located at Ch. 10+260 (Pier at Gridline 5) is located over an anomaly in the resistivity. The resistivity indicates a zone of clean limestone for 10m above the anomaly which, if proven to be competent rock, will reduce the karst risk at the structure footing.
- Two foundations, at Ch. 10+300 and 10+340 (Piers at Gridlines 6 and 7), are located either side of a Turlough. The details of the Turlough are described in Section 2.9. As the footings are not located directly over the identified footprint of the Turlough, the karst risk in relation to the structure is reduced. The resistivity profile east of the identified Turlough shows a zone of low resistivity. The full eastern extent of this anomaly zone is unknown at this time. The feature may extends beneath the footing proposed at Ch. 10+380.
- The proposed footing of the eastern abutment at Ch. 10+420 (End support at Gridline 9) is located over poor ground conditions. The soft overburden extends to 1.6m and is underlain by poor quality rock to approximately 5.0m below ground level.

A methodology for the evaluation and treatment of karst features shall be conducted in accordance with the Construction Environmental Management Plan (CEMP).

8 Drawings and Documents

8.1 List of all Documents Accompanying the Submission

Document Reference	Document	Appendix
GCOB-1700-D-S10-01- 001	Menlough Viaduct General Arrangement Sheet 1	Appendix A
GCOB-1700- D-S10-01- 002	Menlough Viaduct General Arrangement Sheet 2	Appendix A
GCOB-SK-D-672	Menlough Viaduct Plan and Profile Alignment	Appendix A
	Geotechnical Factual Report	Appendix B
GCOB_4.03_6.74_001	Constructability Report	Appendix C

Appendix A

Drawings

	BRIDGE DECK CROSS SECTION DIMENSIONS (ALONG INCREASING CHAINAGE) [mm]														
SECTION	PARAPET	RAISED VERGE	HARD SHOULDER (LEFT)	CARRIAGEWAY (LEFT)	HARD STRIP (LEFT)	RAISED VERGE	BARRIER	HARD STRIP (RIGHT)	CARRIAGEWAY (RIGHT)	HARD SHOULDER (RIGHT)	R/				
WEST ABUT ch 10+097	500	600	500	7000	3500	1000	600	1000	7000	500					
cH 10+200	500	600	500	7000	3500	1000	600	1000	7000	500					
EAST ABUT ch 10+415	500	600	500	7000	1700	1000	600	1000	7000	500					

Do not scale

Galway City Transport Project

CONCRETE BEAMS

As Shown

September 2016

15	04/10/2017	TP	AP	PM
I4	18/07/2017	TP	AP	PM
13	30/06/2017	LM	AP	PM
12	16/05/2017	LM	AP	PM
11	24/10/2016	LM	AP	PM
Issue	Date	Ву	Chkd	Appd

Drawing Title S10-01 Menlough Viaduct Sheet 2

Drawing Status		
For Informa	ation	
Job No	Drawing No	Issue
233985	GCOB-1700-D-S10-01-002	15

Disclaimer Note:

Nóta Séanta:

The Design shown is draft only and is subject to change. More detailed assessments, ongoing studies and the information received from the public may result in changes to parts, or all of the Design. Any changes to the Design may affect the other information.

Tá an Dearadh ina bhfoirm dréacht, d'fhéadfaí athraithe teacht air. Is mar toradh ar mheasúnaithe níos mionchruinne, ar staidéar leanúnach agus ar eolas ón bpobal a dhéanfaí athruithe teacht ar an Dearadh ina iomláine nó ar chuid de. D'fhéadfadh ag aon athrú ar an Dearadh tionchar a bheith aige ar an eolas eile.

A1

PROFILE: SCALE H 1:2500 / V 1:250

Job Title N6 Galway City Transport Project

Scale AS SHOWN @ A1 Date:

May 2017

-			N		0	P	
					РН	ASE 3 - DESIGN	ר
					Legend:	Plan view	
					*****	Current Design	
					TANTIT		
						Structure	
						Profile view	
						Existing Ground Leve	el
						Proposed Road Leve	į
					Includes Ordnance Su Licence number 2010/	rvey Ireland data reproduced under 17CCMA/Galway County Council.	r OSi
					Unauthorised reprodu Ireland and Governme © Ordnance Survey Ire	ction infringes Ordnance Survey nt of Ireland copyright. eland, 2010.	
					San áireamh tá sonraí atáirgeadh faoi Chead Contae na Gaillimhe. S	ocht Shuirbhéireacht Ordanáis Éire lúnas OSI Uimh. 2010/17CCMA/Cor Sáraíonn atáirgeadh neamhúdarait.	ann arna nhairle he cóipcheart
					Snuirbhéireacht Ordai © Suirbhéireacht Orda	iuis Eireann agus Rialtas na hÉireai Ináis Éireann, 2010.	ın.
					Drawing Title Current De	sign	
4	10/05/2017	GOD	НК	EMC	Menlough \ Plan & Profile	/iaduct	
3	21/12/2016	GOD	НК	EMC	Drawing Status	otion	
2	26/09/2016	GOD	НК	LINC	For inform	alion	

Appendix B

Geotechnical Factual Report

GEOTECHNICAL BORING RECORD

REPORT NUMBER

18963

	_																	
со	NTRA	CT N	16 Ga	alway Ci	ty Transpo	ort Projec	t - Phase 3							BOREH SHEET	IOLE N	Ο.	BH3/28 Sheet 1 of 1	
CO GR	-ordii ound	NATES	(m A	529,1 728,2 \OD)	32.46 E 17.63 N 18.82		RIG TYF BOREH BOREH	Pe Ole diam Ole dept	ETER (ˈH (m)	mm)	На 0.	and Dug 70		DATE C DATE C	COMME	ENCE ETEI	D 18/02/2016 D 18/02/2016	
CLI	ENT GINEEI	G R A	alwa RUP	ay Count	y Council		SPT HA	MMER RE	F. NO. %)					BORED) BY SSED	BY	JD JL	
Depth (m)				Des	cription			Legend	Flevation	Denth (m)		Ref. Number	Sample Type	Depth (m)	Recovery		Field Test Results	Standpipe Details
0 1 2 3 4 5 6 7 8	TOP Firm With Obst Rock End	SOIL brown s brownis a mediu ruction - head of Boreh	slight h gr m cc - Lan hole	tly sandy ey slight obble an ge BOUI at 0.70 r	gravelly s y silty sar d boulder DER / Pc n	SILT dy grave content ossible Li	illy CLAY mestone		18.62		20 30/ 70	AA39957	В	0.20-0.3	30			
HARD STRATA BORING/CHISELLING													Die		, 	WAT	ER STRIKE DET/	AILS
From (m) To (m) (h) Comments							Strik		asing)epth	56	At	To		min)	Cor	nments		
															No) water strike		
															G	ROU	NDWATER PRO	GRESS
INS	TALL	ATION D	ETA	ILS				Dat	te	Hole Depth	1	Casing Depth	De W	pth to ater	Comm	nents		
	Date	Tip D	epth	RZ Top	RZ Bas	e 7	Гуре											
RE	MARK	S Hand	dug	pit at lo	cation of E	3H3/28				D - S B - E LB - Env	Small Di Bulk Dis Large E - Enviro	e Legen isturbed (tub) turbed Bulk Disturbe onmental San	d d nple (Jar +	+ Vial + Tub)	UT Sa P - W	- Undist mple Undistu - Water	turbed 100mm Diameter Irbed Piston Sample Sample	

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

18963

1	_	<u> </u>																
CO	NTR/	АСТ	N	6 Ga	lway City	Transpo	ort Pr	oject -	Phase 3				DRII SHE	_LHOLE ET	NO	BH3 Shee	3/28R et 1 of	1
CO GR		DINA [.]	tes Vel	(mOl	529,13 728,22 D)	0.20 E 1.35 N 18 86			RIG TYPE			Casagran	de DAT	e drill E logg	ED ED	11/0 12/0	4/2016 4/2016	6
CLI	ENT	ER	G	ialwa RUP	y County	Council			INCLINATI	ON (deg) METER (mi	n)	Air/Mist -90 80	DRI	LED B	((IG D.	SL O'She	ea
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Frac Spa Lc (m	ture cing og m)	Non-intact Zone	Legend			Descript	tion			Depth (m)	Elevation	Standpipe Details	SPT (N Value)
0									SYMMETI as gravelly SYMMETI as gravelly	RIX DRILLI y clay RIX DRILLI y cobbly cla	NG: No rec NG: No rec y	covery, obs covery, obs	erved by o	driller driller	1.20	17.66		
3									SYMMETI as weathe	RIX DRILLI ered rock	NG: No rec	covery, obs	erved by o	driller	3.00	15.86		
5	4.10	97	97	94	.		540 <u>/ ia)</u>		Medium si blueish da fossiliferou weathered Dips are 2 to medium Apertures	trong to ver ark grey, fin us, localize 1. 20° to locali n spaced, ro are tight to	y strong, the grained, l d chert and y 40° & 80° ough to loca	hick to thinh LIMESTON I stylolites), Discontin ally smooth	y bedded, E (locally slightly uities are , planar. brown cla	widely	4.10	14.76		
6	7.20	100	100	89			550.000		smearing. 4.64-4.78r	m - Clay-fill	ed fracture	., ,						
8	8.70	100	100	100			1330											
9	9.60	100	84	57					8.98-9.01	m - Clay-fill of Borehole	ed fracture e at 9.60 m				9.60	9.26		
RE	MAR	KS			1			1							WAT	FER ST	RIKE	DETAILS
Hol	e cas	sed ().00-4	4.10r	n.					Water Strike	Casing Depth	Sealed At	Rise To	Time (min)	Co N	o wate	ts r strike	e recorded
	TA I 1	A.T.		ETA						Data	Hole	Casing	Depth t	0 00-	GR		VAIE	DETAILS
Date Tip Depth RZ Top RZ Base Type					Date	Depth	Depth	Water	Con	ment	5							
						1					1	1	1					

DRI	LLH	OLE	LOG

RC 968 RC 968 RC 968 Solution: 25-10-06 Ground Level (m) Colonitation: 0 Contractor: Discription: Silect 1 Contractor: Discription: Silect 1 Contractor: Discription: Discription: Silect 1 Contractive: Discription: Discription: Discription: Discription: Discription: Discription: Silect 1 One: Contractive: Discription: Discription: Discription: Discription: Discription: Silect 1 One: Discription: Discription: <th colspa<="" th=""><th>Project</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>E</th><th>DRILLH</th><th>IOLE</th><th>No</th></th>	<th>Project</th> <th></th> <th>E</th> <th>DRILLH</th> <th>IOLE</th> <th>No</th>	Project													E	DRILLH	IOLE	No	
Job No Date 25-10-06 25-10-06 Ground Level (m) 16.30 Co-Ordinates () E 129,297.7 N 228,210.1 Contractor IDL Steet 1 of 1 1 <td< td=""><td>N</td><td>V6 Gal</td><td>way City</td><td>y Outer B</td><td>ypass</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DC</td><td>000</td><td></td></td<>	N	V6 Gal	way City	y Outer B	ypass										DC	000			
Contractor 225-10-06 16.30 E 129,297.7 N 228,210.1 Sheet 1 Contractor TIDL STRATA STRATA Depth (SCR) Figure (Lip) Depth (SCR) Figure (Lip) Strate Strate <td>Job No</td> <td></td> <td></td> <td>Date 25-</td> <td>10-06</td> <td></td> <td>Groun</td> <td>d Level (1</td> <td>n)</td> <td>Co-Ordina</td> <td>tes ()</td> <td></td> <td></td> <td></td> <td>RC</td> <td>900</td> <td></td>	Job No			Date 25-	10-06		Groun	d Level (1	n)	Co-Ordina	tes ()				RC	900			
Contractor Sheet of 1 TRUN DETAILS STRATA Description Sign colspan="2">Sign colspan="2" Sign colspan="2" <th <="" colspan="2" td=""><td></td><td></td><td></td><td>25-</td><td>10-06</td><td></td><td></td><td>16.30</td><td></td><td>E 12</td><td>9,297.</td><td>7 N 228,2</td><td>210.1</td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td>25-</td> <td>10-06</td> <td></td> <td></td> <td>16.30</td> <td></td> <td>E 12</td> <td>9,297.</td> <td>7 N 228,2</td> <td>210.1</td> <td></td> <td></td> <td></td> <td></td>					25-	10-06			16.30		E 12	9,297.	7 N 228,2	210.1				
IDL TRUN DETAILS STRATA Defin CCR (RQ) (SPT) Fronture Spacing Red ^{Col} Legend (Cols) Depth (Cols) Discontinuities DESCRIPTION Strong from from your him's builded fine 0.00 7 0.00 - 50 Closely spaced to 1.5m, (GS) The method in spaced, dping 24 to 256e(s, undiating, locally regular, strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 00 5 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 00 5 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 00 5 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 00 5 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. 1.50 9 1.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong. I.50 - 1.50 moderately strong.	Contrac	tor												Sh	neet	1 of 1			
STRATA Date SITRATA Date SITRATA Detail CRY Fracture ROP To Produce Lagrad (Direck desc) Detail Discontinuities Detail Main Detail Open To Description Detail Discontinuities Detail Main Out of the reduin space of the lagrad (Direck desc) 1.50 Out of the reduin space of the lagrad (Direck desc) 1.50 1.50 Out of the reduin space of the lagrad (Direck desc) Solution of the lagrad (Direck desc) Solution of the lagrad (Direck desc) Out of the reduin space of the lagrad (Direck desc) Out of the lagrad (Direck desc	1	DL												_		1			
Desch Level level Level Level Level Desc Desc Desc Main G 0.00 0.00 7 Image: Spacing	RUI	N DE	TAILS		r	D	el -		S	TRATA	GD ID					gy	nent		
Date RQD Spacing Level Teness Discontinuities Default Main G 0.00 100 7 0.00-5:00 Closely space 0.1:3m, finan median spaced, diping 24 bits 24 bits 2008; space 0.1:3m, finan median spaced, diping 24 bits 24 bits 2008; space 0.1:3m, finan median spaced, diping 24 bits 2008; space 0.1:3m, finan median space diping 24 bits 2008; space 0.1:3m, finan median space diping 24 bits 2008; space 0.1:3m, finan median space diping 24 bits 2008; space 0.1:3m, finan median space diping 24 bits 2008; space 0.1:3m, finan me	Depth	(SCR)	(SPT) Fracture	Red'cd	Legend	(Thick-	n			DES	CRIP	TION				colo	strur		
000 7 100 7 150 5 150 150 2.00 C4 NL 100 0 0097 6 3.00 150 100 0 1100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 0 1100 <td>0.00</td> <td>RQD</td> <td>Spacing</td> <td>Level</td> <td></td> <td>ness)</td> <td>Disc</td> <td>continuition = 5.00 Cl</td> <td>es oselv spac</td> <td>ed to 1 5m</td> <td>ul Str</td> <td>ong fresh gr</td> <td>Main ev thinly h</td> <td>edded</td> <td>l fine</td> <td>0</td> <td>ll g</td>	0.00	RQD	Spacing	Level		ness)	Disc	continuition = 5.00 Cl	es oselv spac	ed to 1 5m	ul Str	ong fresh gr	Main ev thinly h	edded	l fine	0	ll g		
1.50 5 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.60 0.20 1.50 - 1.50 moderately strong. 1.80 to 2.0m: Joint: subvertical, undulating smooth, with a light greenish gay silt, open. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 3.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.00 9 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.50 - 1.50 moderately strong. 1.00 1.50 - 1.50	0.00	100 (95) 65	7				ther 26d roug	n medium eg's, und gh, with a	spaced, dij ulating, loc brown silt	oping 24 to ally irregula smear.	ar,	ained LIMES	STONE.						
1.50 1.50	100.000	05				Ē													
2.00 (² / ₄) (³ / ₄)	1.50	100	5			Ē	1.50) - 1.50 m	oderately s	trong									
100 NL Implication productions with a light great in short rial, plant in coold, with a light great in short rial, plant in the short r	2.00	(74)		-		Ē	1.80) to 2.0m	Joint: sub	vertical,									
(99) 6 (5.00) wide.Non-intact-fractured rock. 2.80 to 3.4m: joint: subvertical, plant, smooth, with a light greenish gey silt, open. Image: smooth, with a light greenish ge		100		-1		ŀ	grey	ulating, si yish brow	nooth, witl n silt,	n a light									
3.00 7 2.80 to 3.4m; John; subvertial, planar, locally inregular, smooth, with a light greensh gey sil, open. 100 9 9 5.00 6 11.30 5.00 5.00 5.00 5.00 11.30 5.00 5.00 5.00 BH terminated at 5.0m bgl on RE's Instruction. Image: State of the s		(99)	6			(5.00)	wid	e.Non-int	act-fracture	ed rock.									
9 9 100 1130 100 1130 100 1130 100 <td>3.00</td> <td>11</td> <td></td> <td></td> <td></td> <td>-</td> <td>2.80</td> <td>) to 3.4m</td> <td>Joint: sub</td> <td>vertical,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3.00	11				-	2.80) to 3.4m	Joint: sub	vertical,									
100 92 9 6 11.30 5.00 BH terminated at 5.0m bgl on RE's Instruction. BH terminated at 5.0m bgl on RE's 5.00 11.30 5.00 BH terminated at 5.0m bgl on RE's Imstruction. 5.00 11.30 5.00 BH terminated at 5.0m bgl on RE's Imstruction. 5.00 Imstruction. Imstruction. Imstruction. Imstruction. 5.00 Imstruction. Imstruction. Imstruction. Imstruction. Imstruction. Imstruction. Imstruction.							a lig	nar, locall ght greeni	y irregular, sh gey silt,	smooth, wi	th								
100 5.00			9			Ē													
52 6 11.30 5.00 BH reminated at 5.0m bgl on RE's Instruction. 5.00 Image: Solution of the second sec		100 (93)		_		È													
5,00 6 11.30 5,00 BH terminated at 5.0m bgl on RE's Instruction. BH terminated at 5.0m bgl on RE's BH terminated at 5.0m bgl on RE's Instruction. Image: standard sta		52				Ē													
5.00 11.30 5.00 BH terminated at 5.0m bgl on RE's Instruction. BH terminated at 5.0m bgl on RE's Instruction. BH terminated at 5.0m bgl on RE's Instruction. Instruction. Instruction. Instruction. Drilling Progress and Water Observations Rotary Flush REMARKS Date Time Depth Depth Core Dia Mathematical instruction Strike Standing From To Type Returns Borehole backfilled w County Tractor Bit Bit HQ Logged By All dimensions in metres Client Galway County Council Method/ County Tractor Bit HQ Logged By			6			ŧ													
Image: Solution of the second seco	5.00			11.30		- 5.0	00				DI	Theresiente	lat 5 () un h	alani	DEta				
Drilling Progress and Water Observations Rotary Flush GENERAL REMARKS Date Time Depth Depth Dia Core Dia mm Water From To Type Returns Borehole backfilled w cement bentonite grou Image: Strike standing in metres Image: Strike standing in metres Image: Strike standing in mm To Type Returns Borehole backfilled w cement bentonite grou All dimensions in metres Client Galway County Council Method/ Plant Used County Tractor Bit HQ Logged By Design Logged By FAT										1	In	struction.							
Date Time Depth Depth Dia mm Strike Standing From To Type Returns RETURN RKS Image: Date Image: Dia		Dri	illing Pro	ogress and	d Wate	er Obs	ervatio	ons We	nter		Rotary	Flush	Data		GEN	ERAL			
All dimensions in metres Client Galway County Council Method/ County Tractor Bit HQ Logged By Design Logged By FAT	Date	Ti	me De	pth Dep	th I	Dia	mm	Strike	Standing	From	10	Type	Keturns	Bore	hole bac	filled	vith		
All dimensions in Client Galway County Council Method/ County Tractor Bit HQ Logged By Design FAT														ceme	ent bento	nite gro	ut.		
End 1625	All dim	ensions etres	in Client	Galway	County	/ Coun	cil		Methoo Plant U	I/ Coun	ty Trac	ctor	Bit H Design	IQ	Logged	By EAT			

Project										TRIAL PIT	`No	
N6 Gal	N6 Galway City Outer Bypass TP 969 No Date 24-10-06 Ground Level (m) Co-Ordinates () 24 10 06 8 72 E 120 237 4 N 228 252 2											
Job No		Date 24-10	-06	Ground Lev	vel (m)	Co-Ordinates ()	1 11 220	0.50.0				
Contractor		24-10	-06	8	. 72 GROUNDWATE	E 129,337. R Water strikes: Re	4 N 228,.	252.3 .): Sealed at:	SI	neet		
IDL					STRIKES	1st: 0.45m 2nd:	0.10m			l of 1		
	A		B		C	3rd:	D			Legend		
										11: 11: 11: 10: 11: 10: 11: 10: 10: 10: 10: 10: 10:	× 9×	
											8	
2								2				
3												
4												
5_=												
Donth No.	STRATA SA									LES & IES	olS e/Tests	
0.00-0.19	Soft da	mp brown sligh	tly sandy gra	ivelly SILT/	CLAY with so	me subangular to	Tests			I	» 103t3	
0.19-1.30	Stiff da	nded cobbles (1 mp grev brown	OPSOIL). mottled ora	nge slightly s	andy slightly a	gravelly SILT	Ţ	0.10		w		
	with so 1000m	me subangular t m long.	to subrounde	d cobbles a	nd boulders.Bo	oulders up to		0.70		B		
	0.50 gr	ey mottled brow s.Boulders up to	n, with many o 1000mm lo	y subangular ong.	to angular cob	bles and		0.70				
1.30	Refusa	- possible intac	et rock (fract	ured dark gr	ey limestone).							
5												
Shoring/Supp	port:									GENERA	L	
Stability:									Dit	KEMAKK	.5	
	- 3.5								excar	vation-spalling	, of sides	
	A	x							0.45r	n.	at	
D	X	B 1.2										
	C	¥										
All dimensional	in lot	01 0		.,		1/ 11'- 1'	20	D:		Lagrad D		
Scale 1:62.5	dimensions in metres cale 1:62.5 Client Galway County Council Method/ Hitachi ex120 Bit Plant Used Design TS											

DRILLHOLE LO	OG
--------------	----

Project												1	DRILLH	OLE	No
1	N6 Gal	lway City	Outer B	ypass									DC	070	
Job No			Date 24-	-11-06		Ground Level	l (m)	Co-Ordina	ates ()				RC	970	
			24-	-11-06		16.6	52	E 12	29,413.	.2 N 228,	286.6				
Contrac	ctor											S	sheet	1	
1	IDL													01 1	
RU	N DE	TAILS					S	TRATA						y	ent/
Depth	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Depth (Thick-	1		DES	SCRIP	TION				olog	trum
Date	RQD	Spacing	Level		ness)	Discontinui	ities	Det	ail		Main			Ge	Ins Bad
0.00				00	Ê	0.00 - 1.40				ibangular lir OBBLES.	nestone an	d grar	nite		
				00	$\frac{1}{40}$										
	45 (14)	NA		Poo	E										
	0		15.22	po	F 1.40	D									
		100			Ē	1.40 - 9.00	Closely spac	ed to 5.0m,	V	ery strong sl	ightly wea	therec	l grey		
2.00		9			Ŀ	24deg's, un	dulating, loca	ally irregula	ar, sli	ightly sandy	LIMESTO	NE.	n gramed		
						smooth, wit	th a little bro	wn silt.							
	100	12			ļ										
	(47) 19 3.00 - 3.00 moderately weathered														
	'bleached' white.													54	
3.50		7			Ę	3 50 - 3 50	moderately s	trong							
					ŧ	5.50 5.50	moderatery	dong.							
	93				F										
	43	0			I.										
5.00		0			ł										
5.00	1		-		F (7.60)										
	100				Ę (1.00)										
	(84)	4		F	Ę										
	64		_		ŧ	6 10 to 6 4	my Joint: aub	vertical							
6.50				H	1	planar, smc	both, with a l	ittle grey sil	lt,						
		5			1	open.									
	100		-												
	(67)				E										
		7			1										
8.00)		-		-										
	100														
	99)	2			Ę										150
9.00)		7.62		9.0	0			B	H terminate	d at 9 0m h	gl on	RE's		
	Instruction.														
					E										
					ŀ	<u> </u>		11					National		
	Dri	Iling Pro	gress and	d Wate	er Obse	rvations	Vater		Rotary	Flush	Det		GENE	RAL	
Date	Ti	me De	pth Dept	h L	Dia 1	nm Strike	Standing	From	To	Type	Keturns	Per	ahola had	anno	dth
												cem	ent benton	ite grou	it.
All dim	ensions	in Client	Galway (County	Counc	il	Method	Coun	ty Trac	ctor	Bit H	IQ	Logged I	By	
Scale	metres Scale 1:62.5														

Project									1	FRIAL PIT No
N6 Galway City Outer Bypass Job No Date 20-10-06 Ground Level (m) Co-Ordinates ()										TP 971
Job No		Date 20-10-	-06	Ground Le	vel (m)	Co-Ordinates ()				
Contractor	_	20-10-	-06	10	5.41 GROUNDWAT	E 129,416 ER Water strikes: R	.2 N 228,2	288.1): Sealed at:	Cha	
IDI					STRIKES	1st: dry 2nd:		č.	She	l of 1
		٨	D		(3rd:	D			Lagand
0 =		A	D		(/		E 0		Str Mr Str
1								E		11 × 11 × 11
								E		[™] ×°°××××××××××××××××××××××××××××××××××
1								= 1		X X X X X
								E		× × × ×
								E		
2								E ²		
								E		
								Ē,		
								E		
								E		
								E,		
								Ē		
								Ē		
5	E_5									
			SA	MPL	LES & TESTS					
Depth	No	off damp brown gray	ter Depth (m) N	o Remarks/Tests					
0.50 1.60		ome subangular to sub o 300mm long.	prounded co	bbles and bo	oulders (TOPS	SOIL).Boulders up		0.30	J	
0.50-1.60	S	oft damp grey brown ubangular to subround	mottled slig led cobbles	htly sandy g and subangu	ravelly SILT alar to angular	with many boulders.Boulders				
	u	p to 450mm long.		5	U			1.00	EJ	3
1.60	D	efucal - possible inter	t rock (fract	tured dark or	ev limestone)			0.9997001		
1.00		erusar - possible intac	A TOCK (Hac	ureu uark gi	cy micstone)					
004										
Shoring/S	uppor	t:								GENERAL
Stability:	I.L.									REMARKS
									Pit dry excav	y, unstable during ation-spalling of sides
		1							from (0.30m.
MAYE	A +	<u> </u>								
D	>	B 1.3								
	C									
All dimensio	ons in	Client Galway Cou	inty Coun	cil	Meth	d/ Hitachi ex l	20	Bit		Logged By
Scale 1:6	2.5	· · · · · · · · · · · · · · · · · · ·			Plant	Used		Design		TS

Project								TR	LIAL PIT No	
N6 G	alway Cit	y Outer Byp	ass						-	P 1437
Job No		Date 25-10	-06	Ground Le	vel (m)	Co-Ordinates ()			1 1407
0		25-10	-06	1:	5.24 GROUNDWATI	E 129,3	09.4 N 228,	203.5		
Contractor					STRIKES	1st: dry 2nd:			Sheet	1 -6 1
			D			3rd;	D			
0	A		В		C			0 0	E	Legend
								E		
								Ē		
1-								-1		
								E		
								Ε		
2-								- 2		
								E		
								Ē		
3-								-3		
=								Ē		
								Ε		
4-								- 4		
								Ē		
								Ē		
5								<u> </u>	L	
			SI	RATA			In Situ	SA	MPLE	S & TESTS
Depth N		OIL with many i	roots and roo	DESCRIP:	TION		Tests	0 00-0 1	n) NO 5 J	Remarks/Tests
0.10-0.15	Soft da	ump dark brown	slightly sand	ly slightly g	ravelly SILT/C	LAY with some	1			
0.15	Boulde	r to subrounded ers are up to 300	mm in size.	rare subang	gular to angula	r boulders.				
	TP aba	indoned at 0.15r	n bgl. Obstru	ction - prob	able limestone	rock.				
5										
5			1							
Shoring/Su	apport:								G	ENERAL
								Dit dev	table during	
									excavati	on.
	A									
D	z - -	B 0.95	, ,							
	С									
All dimension	ns in Clien	t Galway Cou	unty Counc	cil	Metho	d/ Hitachi e	x 135	Bit	Lo	gged By
Scale 1:62	.5				Plant U	Jsed		Design		TS

Project							Г	RIAL PIT No	
N6 Galway	City Outer Bypass	1						TP 1438	
Job No	Date 26-10-06	Ground Le	vel (m)	Co-Ordinates ()				11 1400	
-	26-10-06	1:	5.91	E 129,428.	7 N 228,2	258.2			
Contractor			STRIKES	1st: dry	ise to (@ 20 mm.): Sealed at:	She	et	
IDL				3rd:				1 of 1	
0	A B	1	C		D	0		Legend	
=						E			
						E			
1 -						E,			
· ∃						E			
						E			
=						Ē			
2									
						E			
						E			
3-						= 3			
						E			
Ξ						E			
4						<u>-</u> 4			
						E			
1						E			
5_						_E_5			
	1	STRATA				SA	MPL	ES & TESTS	
Depth No		DESCRIPT	TION		In Situ Tests Wat	er Depth (1	n) N	o Remarks/Tests	
0.00-0.10 Br	oken rock at surface as light gr	rey LIMESTO	NE.			0.00-0.1	0 J		
	abandoned at 0.111 bgr. Obsu	uction - proba	ole lock.					0	
Shoring/Support:								GENERAL	
Stability:								REMARKS	
							Pit dry	, stable during	
2.3	excava	ation.							
A	A								
D	- B 0.8								
	<u>+</u>								
C									
All dimensions in C	lient Galway County Cou	incil	Method/	Hitachi ex 1	35	Bit		Logged By	
Scale 1:62.5			Plant Us	ed		Design		TS	

Borehole Log

Drilled by TB	Sta	rt	Equipment, Methods	and Remar	ks		Depth from to D	iameter Casing Depth	Ground Level	+16	3.65 mOD
Logged by JL Checked by ROR	Enc 12/1	10/2003 10/2003	Rotary Open Hole 131mi 68mm diameter 1.00m to	n diameter 0 10.00m, Boi	.00m to rehole ex	1.00m. Rotary Core camined by televiewer.	1.00m 10.00m	68mm	National Grid	E 1. N 2.	29407.30 28290.20
Samples	and	Tests	5			Strata			1		
Depth	Тур	e & No	Records	Date Casing	Time Water		Description		Depth,Level (Thickness)	Legend	Backf
				11/10/2003	3 0800	OVERBURDEN**			(0.50)	0.00	\square
0.00-1.00	Rotar Hole	y Open Drilling				Possible LIMESTONE /	COBBLES**		0.50 +16.15		\square
1.00-1.40	·23 0					Possibly fractured LIME as coarse gravel and co	STONE** Recovered	1.00-1.82 m Non-intact.	1.00 +15.65 (0.40)		
	0					recovery) Strong grey brown fine g	rained LIMESTONE	core loss	1.40 +15.25		$\left \right\rangle$
1.40-2.30	39 11					stylolites and rare calcite WEATHERING: Dissolu	e veins. tion features are	L = 1.90-1.98 m [Non-intact			\sum
2.35	100		CS 1			common with fracture su chalky residue, often acc orange brown discoloura	rfaces displaying companied by ttion. Calcite	2.27-2.34 m ⊑ - Non-intact -			
2.30-3.05	75 31	NI 80 140				DISCONTINUITIES: 0° - medium spaced, predom	15° very closely to inantly closely	2.72-2.94 m			\sum
3.05-3.40	100 100 43					spaced to 4.15m then m smooth planar to undula 35° - 50° medium to wide undulating fractures, con	eolum spaced, ting fractures. ely spaced smooth nmonly found	3.40-3.47 m []			Ľ.
2 40 4 70	95					with chalky white residue	e on surface.				\sum
3.40-4.70 4.15-4.65	77		CS 2					1			
								4.50-4.63 m 75 degree smooth undulating fracture 4.63-4.82 m			
4.70-5.85	100 82 82							Non-intact Assumed zone of core loss 5.35-5.46 m [
		-				72		Non-intact	(8.60)		
5.85-6.80	75 73			11/10/2003	1800			smootn undulating fracture with white chalky residue and			
6.50 6.72	/3		CS 3 CS 4	1.00 12/10/2003 1.00	0800			clay smear on fracture surface			
		NI 280 490						Assumed zone of			
6.80-8.40	91 91 91										2
								-			
8.40-10.00	68 43		Core Slipped					8.92-8.98 m Non-intact 8.98-9.10 m Subveritcal			1
				12/10/2000	1900			smooth undulating fracture 9.18-9.36 m			C
Darth	TCR	14	Papard=/Car -1	1.00 Date	Time	EVELOPATOPULICE		Non-intact -			1
oundwater Ent	tries st strik	e behav	iour	Casing Depth se	Water	Depth Related Remarks From to (m)	ENDS AT 10.00 M		Chiselling Depths (m) T	ime Tool	ទ បុទ្ធគរ
(m) ne observed (s	see Ke	y Sheet)		(m)				true (m) 1	1005	- 4961
s: For explanatio eviations see key	n of sym	bols and All depth:	s and reduced	Project		N6 Galway City Outer Bypa	ss Contract 2 Ground		Borehole		
pth column. 1:50	(c) MES	G HBIII (298).	11/02/2004 11:34:47	Project No Carried ou	t for	KC3210 Galway County Council			R She	C135 eet 1 of 1	

Appendix C

Constructability Report

Galway County Council **N6 Galway City Ring Road** Menlough Viaduct Constructability

GCRR-4.03-6.1.74-001

Issue 4 | 5 October 2017

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 233985

Ove Arup & Partners Ireland Ltd

Arup Corporate House City East Business Park Ballybrit Galway H91 K5YD Ireland www.arup.com

ARUP

Document Verification

ARUP

Job title		N6 Galway	City Ring Road	Job number					
				233985					
Document title		Menlough V	/iaduct Constructabili	File reference					
Document ref		GCRR-4.03-6.1.74-001							
Revision	Date	Filename	Filename GCOB_4.03_6.1.74_001 Menlo Viaduct Co						
Issue 1	14 Oct 2016	Description	Issue 1						
			Prepared by	Checked by	Approved by				
		Name	Eimear Keane	Mary Hurley	Pat Moore				
		Signature	Emer lece.	RM.					
Issue 2	6 May	Filename	GCOB_4.03_6.1.74_001 Menlo Viaduct Construction_I2.docx						
2017		Description	Issue 2						
			Prepared by	Checked by	Approved by				
		Name	Eimear Keane	Mary Hurley	Pat Moore				
		Signature	Emer Mere.	May Huby	RM.				
Issue 3	23 June	Filename	GCOB_4.03_6.1.74_001 Menlo Viaduct Construction_I3.doc						
	2017 Description Issue 3		Issue 3						
			Prepared by	Checked by	Approved by				
		Name	Daniel Mangan	Mary Hurley	Pat Moore				
		Signature	Daviel Mayon	May Huly	RM.				
Issue 4	5 Oct	Filename	Filename GCOB_4.03_6.1.74_001 Menlo Viaduct Construction_I4.						
	2017	Description	Issue 4						
			Prepared by	Checked by	Approved by				
		Name	Daniel Mangan	Mary Hurley	Pat Moore				
		Signature	Dariel Mayor	May Huly	PM.				
			Issue Documer	nt Verification with I	Document 🗸				

Contents

			Page
1	Intro	luction	1
2	Const	4	
	2.1	Introduction	4
	2.2	Stage 1 - Site access and enabling works	4
	2.3	Stage 2 - Construction of the Limetstone pavement protection system	5
	2.4	Stage 3 – Viaduct construction	8
	2.5	Stage 4 – Completion of works	9
3	Const	9	
	3.1	Stage 1 – Site access and enabling and works	9
	3.2	Stage 2 – Viaduct Construction	10
	3.3	Stage 3 – Completion of works	11
4	Const	ruction Method 3	12
	4.1	Stage 1 – Site access and enabling and works	12
	4.2	Stage 2 – Viaduct Construction	12
	4.3	Stage 3 – Completion of works	14
5	Sumn	nary and Conclusions	14
6	Refer	ences	15

1 Introduction

The N6 Galway City Transport Project, hereafter referred to as N6 Galway City Ring Road (GCRR) or proposed road development, incorporates the design of a viaduct structure, known as the Menlough Viaduct in the townland of Menlough to the north of Galway city, as shown in **Figure 1.1** below. The viaduct is situated between the River Corrib Bridge to the west and Lackagh Tunnel to the east.

The proposed viaduct will be elevated over an area of Annex I habitat, namely Limestone pavement and a Turlough to reduce the environmental impacts of the proposed road development. It is located in a rural environment and the terrain is undulating with rocky outcrops and local depressions. The Menlough Viaduct is located outside of the Lough Corrib candidate Special Area of Conservation (cSAC) and between 45m and 140m to the north of the cSAC boundary.

Given the environmentally sensitive location of the viaduct, the rural setting and general accessibility to the site, the construction methods are an important aspect to be considered at this stage. This report describes the possible methods utilised to construct the Menlough Viaduct and the measures taken to minimise impacts on the Annex I habitat.

The Menlough Viaduct can be constructed using different methods, and/or a combination of these methods.

Method 1 consists of constructing from ground level using a protective layer system to protect the Limestone pavement; Method 2 consists of constructing using a cantilever type system with limited works taking place on the Limetone pavement itself.; and Method 3 consists of prefabricated construction on a span-by-span basis.

For all methods the following constructability constraints apply:

- 1. Construction of the viaduct foundations will require specific requirements to be satisfied to ensure that there will be no impact to the groundwater body from the construction. Pouring of the cement for foundations will only be undertaken following inspection and approval by a qualified hydrogeologist that no impact will occur. The inspection will require observation of the full depth and extent of the excavation in order to identify if any karst flow paths, such as conduits, are present.
- 2. If no karst pathways are evident in the excavation then the hydrogeologist will approve the construction to proceed.
- 3. If karst pathways are present in the excavation then there is risk that cement could leak into the aquifer, which would have negative impacts on the groundwater body and any supported groundwater dependant terrestrial ecosytems (GWDTE). The groundwater body underlying the Menlough Viaduct is the Lough Corrib Fen 1 (Menlough) GWB which supports GWDTE in the Lough Corrib cSAC European sites. Potential impacts from cement to the groundwater body include restricting or sealing groundwater flow paths or reducing the water quality due to increased turbidity. In order to prevent these potential impacts mitigation measures are detailed in the Construction Environmental Management Plan (CEMP) to ensure that karst can be managed if encountered so that no impact to the groundwater body occurs.
- 4. The design of the mitigation is detailed in the CEMP and comprises of backfilling the karst to ensure that the feature does not lose its connectivity or flow path within the aquifer and then secondly the feature is sealed from the excavation to ensure that cement will not enter or impact the feature.
- 5. Based on the regional groundwater levels measured during the ground investigation the construction and excavations are expected to remain above the groundwater table and on this basis no pumping or dewatering is included in the design. If the excavations need to be deeper than expected then the construction schedule may need to be modified in order to restrict constructing and inspecting the foundations to the groundwater low.
- 6. No construction works will take place directly within the extents of the Turlough.

Similiarly, the necessary headroom at the side road (5.3m) and a desired headroom for bat passage (2.5m) is provided generally over the full length of the bridge, with the exception of the central portion near chainage (Ch.) 10+200 where the headroom reduces to approximately 1.5m due to the local topography. A further localised reduction in headroom occurs in this area at the point of the peaking of the contours which is approximately $100m^2$, with the absolute lowest clearance at the peak contour being 0.75m. At this location no Limestone pavement protection

GCRR-4.03-6.1.74-001 | Issue 4 | 5 October 2017 | Arup

system will be provided as it would not be possible to safely remove the system. No construction works will take place within this zone from the ground level.

The first and third method, as presented in **Section 2** and **Section 4**, involves protecting the Annex I habitats and then constructing the viaduct off the ground. The measures taken to protect the Limestone pavement and Turlough are also described in **Section 2**. The second methodology detailed in **Section 3** of this report is a balanced cantilever system that would allow some of the viaduct structure to be constructed primarily without any interaction with the ground below. The site preparation and reinstatement works are also outlined in **Section 2**, **3** and **4** for each construction method. A summary of the findings of this report are outlined in **Section 5**.

2 Construction Method 1

2.1 Introduction

Construction Method 1, will allow construction to be undertaken from ground level, by first installing a protection system over the Limestone pavement, similar to that shown in **Figure 2.1** below, to create a working platform for construction of the viaduct that would not result in a residual impact on the Limestone pavement. In order to protect the surrounding area of Limestone pavement from spillages of sand and gravel from the protection system, the geotextile membrane will evelope the sides of the protection system to contain the various layers.

Figure 2.1: Temporary construction on Limestone pavement

The stages of the construction under this methodology are as follows:

- Stage 1 Site access and enabling works
- Stage 2 Construction of the Limestone pavement protection system
- Stage 3 Viaduct construction
- Stage 4 Completion of works

2.2 Stage 1 - Site access and enabling works

The first stage in the sequence of construction for this section of the proposed road development will be to construct the section of the proposed road development shown in blue in **Figure 2.2** below as these sections can then be used for site access to construct the viaduct. There will also be limited construction traffic from Bóthar Nua and Sean Bothar as shown in green in **Figure 2.2**. The access and construction traffic paths have been designed to minimise the impact and interaction with the Annex I habitats. A construction path of approximately 3-5m either side of the bridge deck will be required.

Figure 2.2: Construction Method 1 Site Access

The proposed development boundary fencing will be erected to isolate the construction area. This fencing will be erected in a such a manner which will not impact on the structural integrity of the Limestone pavement. The vegetation assocaiated with the Limestone pavement will be removed as part of the site clearance prior to the installation of the Limestone pavement protection system detailed in **Section 2.3**. No machinery will be located on top of the Limestone pavement without the protection system in place. Any vegetation on top of the Limestone pavement will be removed using hand held equipment. Vegetation will be cut only and will not be up-rooted. The protection system will be put in place anywhere there is the potential for interaction between construction work and the Limestone pavement.

2.3 Stage 2 - Construction of the Limetstone pavement protection system

The area of Limestone pavement to be protected is approximately 5,750m². The function of the Limestone pavement proection system is to safeguard the structural integrity of the Limestone pavement from loading associated with the viaduct construction that could potentially cause structural damage. In order to design the protection system required it is necessary to understand the construction loadings and duration.

The construction of Menlough Viaduct is anticipated to take 18 to 24 months. During this time, both tracked and untracked machinery will be used depending on the terrain. A non exhaustive list of the construction machinery expected to be used during the construction period consists of excavators, cranes, dump trucks, loaders, roller trucks and concrete equipment. The anticipated applied loading on the ground due to construction is in the range of 35-50kN/m². This is the total load anticipated inclusive of the wet concrete, construction machinery and falsework, where applicable. The loading will be intermittent and not confined to one single location. This is the expected loading on the area of Limestone pavement only, other loadings will apply at other locations.

The protection system will incorporate layers of materials to firstly protect the surface of the Limestone pavement but also to redistrubte the construction loadings and avoid point loads which may cause induced cracks to the surface of the Limestone pavement. Figure 2.3 below shows an indicative sketch of this protection system which is made up of the following:

- 1. A heavy duty non woven protection geotextile layer on the surface of the Limestone pavement
- 2. A layer of sand to form a level surface and protect the geotextile from tearing due to the gravels
- 3. A layer of gravels to provide stability and an interlocking system for the load transfer platform geogrid
- 4. A load transform platform geogrid to redistribute the point loadings and provide a mechanically stabilised layer and a safe working platform for construction
- 5. A layer of gravels to provide an interlocking system for the mechanically stabilised layer and clause 804 or similar surface for construction traffic to traverse

Figure 2.3: Limestone pavement protection system

2.3.1 Geotextile protection layer

Standard geotextile membranes are permeable nonwoven fabrics which when used in assoiciation with soil, have the ability to separate, filter, reinforce, protect or drain. The protection geotextile layer will be used to prevent the sand and granular material from seeping into grikes associated with the Limestone pavement. A heavy duty non woven protection geotextile will be used in this instance. The protection geotextile shall have a good elongation as this will help mould the layer around the clinks and grykes of the Limestone pavement and provide full protection as the geotextile is designed to deform in such a way. This layer will act as the first layer of protection to the surface of the Limestone pavement. As such it is important that this layer is of sufficient strength as to not tear or puncture, and shall have a min strength of 46-55 kN/m and a minimum pore sizing of approxamtely $65-75 \mu$ mm. This is to prevent any seepage of sand into the grikes of the Limestone pavement. The heavy duty non woven protection geotextile shall be crane lifted from outside the Limestone pavement to the start of the protection area. The geotextile can be rolled out and laid manually on site without the need for any heavy machinery.

2.3.2 Sand layer

A layer of fine sand will be placed on top of the geotextile protection layer to protect the material from any tearing due to the angular gavels which will be used with the structural geotextile membrane for distributing the loading. The sand layer shall be built up and compacted to form a level surface above the Limestone pavement. The sand layer is required to be a medium to coarse graded sand in accordance with ISO EN 14688. Particle sizes in the range of 0.2mm to 2.0mm will be used which will provide enough flexibility to even out the surface while also large enough not to seep through the geotextile.

2.3.3 Geogrid load transfer platform

Geogrid load transfer platforms (LTP) are most commonly used in the construction of piled foundations on soft ground. The LTP acts to disperse the applied loading to the entire foundation and not solely to the supporting pile foundations. Similarly this can be applied to the areas of Limestone pavement. Without the LTP the applied loading would concentrate on the first contact point with the Limestone pavement, such a loading would likely cause the Limestone pavement to fracture or break. However the inclusion of the LTP, as can be seen in **Figure 2.4** below, results in the loading being diffused and applied over the entire pavement area. A material which can achieve this load dispersal, and in particular disperse loads in a multidirectional pattern, shall be utilised. This type of geogrid has near isotropic tensile properties which leads to a mechanically stabalised layer.

Figure 2.4: Radial loading dispersion of geogrid load transfer platform (Tensar International, 2010)

These type of geotextiles have been used in other infrastructure projects in Ireland and the UK, for example A2 Maydown to City of Derry Airport and Arecleoch Windfarm South Aryshire. Only products which have undergone multiply rigorous tests to support the performance criteria will be used for this Limestone pavement protection system.

2.3.4 Gravel layer

A 200mm layer of 100-150mm graded stone will be placed above and below the load transfer geogrid. The stone layers will interlock with the triangular openings of the geogrid to form a stabile layer of suitable stiffness as can be seen in **Figure 2.5** below.

Figure 2.5: Interlocking of stone layer with geogrid (Tensar International, 2010)

The protective system will be finished with a suitable surface such as clause 804 to enable construction traffic to traverse the area.

2.4 Stage 3 – Viaduct construction

Temporary falsework will be constructed above the Limestone pavement protection system to below the soffit of the bridge deck as shown in **Figure 2.6**. This will allow the necessary construction platform to construct the viaduct, for example for a concrete bridge the in-situ concrete could be poured and then post-tensioned or for a steel bridge, the steel sections can be lifted into place and connections fitted.

No construction works are permitted within the area of the Turlough itself. At both the local road and the Turlough a temporary spanning structure will be utilised to support the formwork for the construction activities. Where in situ concrete is used for the superstructure, it is expected that a temporary bridging structure would be built over the Turlough to permit construction from below the proposed deck. For construction methods using prefabricated elements, the lifting of these elements above the Turlough will be undertaken using lifting equipment located at a suitable distance from the Turlough to avoid any impact. A netting system will also be used over the Limestone pavement and Turlough area to catch any falling debris or materials. This will ensure that no damage occurs to the Limestone pavement or Turlough environment beneath.

Figure 2.6: Construction with temporary falsework

2.5 Stage 4 – Completion of works

Once the viaduct structure is complete all construction related material will be removed, including the Limestone pavemet protection system. The removal of this protection system is an important aspect of ensuring the physical structure of the Limestone pavement is intact.

The removal will be done in a similar staging as to how it was constructed. The initial layers of the gravel and geogrid will be removed followed by the sand and the protective geotextile layer. The protective geotextile layer shall be manually rolled back off the Limestone pavement and crane lifted away from the site. No machinery will be located on top of the Limestone pavement during this activity.

3 Construction Method 2

The second construction method presented is the balanced cantilever system and is less invasive on the protected habitats as the ground is not used as a platform for the construction works. The construction works will be restricted to minimise direct contact with the Limestone pavement and avoid direct contact with the Turlough. It should be noted that where balanced cantilever methods are used, it will not be for the full length of the bridge and some parts of the bridge will be constructed using Construction Method 1.

The stages of the construction under this methodology are as follows:

- Stage 1 Site access and enabling works
- Stage 2 Viaduct construction
- Stage 3 Completion of works

3.1 Stage 1 – Site access and enabling and works

As described in **Section 2.2**, the proposed road highlighted in blue in **Figure 3.1** will be constructed first and will be used for site access to construct the viaduct. There will also be limited construction traffic from Bóthar Nua and Sean Bothar as shown in green in **Figure 3.1**. Areas of Limestone pavement will need to be protected temporarily during the construction, using the protection system described in **Section 2.3**. This protection system will be put in place anywhere there

GCRR-4.03-6.1.74-001 | Issue 4 | 5 October 2017 | Arup

is the potential for interaction between construction work and the Limestone pavement and under the footprint of the structure to protect the Limestone pavement in the event of any falling debris or materials during construction. Access will be restricted to the main area of Limestone pavement beneath the large span of the structure and to the Turlough.

The proposed development boundary fencing will be erected to isolate the construction area as outlined in **Section 2.2** of this report.

3.2 Stage 2 – Viaduct Construction

The balanced cantilever method with travelling forms would be adopted as shown in **Figure 3.2** to construct the viaduct and avoid the need for temporary supports over the large area of Limestone pavement beneath the main span.

As described in **Section 3.1** access to the site would be gained from the proposed road development east and west of the viaduct location and construction traffic such as concrete trucks or cranes would be able to travel to the site location via these sections of the N6 GCRR. In the case of a concrete bridge the in-situ concrete can be poured from these sections of the N6 GCRR. For further mitigation details refer to Section 8 Sediment, Erosion and Pollution Control Plan, of the CEMP The concrete will be pumped as the formwork continues to progress further along the structure. For the shorter spans, particularly over the Turlough, the balanced cantilever could also be continued. Where in situ concrete is used for the superstructure, it is expected that a temporary bridging structure would be built over the Turlough to permit construction from below the proposed deck. For

construction methods using prefabricated elements, the lifting of these elements above the Turlough will be undertaken using lifting equipment located at a suitable distance from the Turlough. For a steel bridge the steel girders would be lifted into place using a crane located on the constructed N6 GCRR.

This is a less invasive construction methodology as it avoids any large scale construction works off the Limestone pavement, although, some parts of the bridge will be constructed using Construction Method 1. A netting system will also be used over the Limestone pavement and Turlough area to catch any falling debris or materials. This will ensure that no damage occurs to the Limestone pavement environment beneath.

3.3 Stage 3 – Completion of works

As some of the works are completed from the western and eastern approaches to the structure and not off the ground itself, the removal and reistatement works are reduced with this option. All construction related material will be removed following completion of the works and the Limestone pavement protection system will be removed in the reverse to how it was installed as discussed in **Section 2.5** of this report. The protective netting will also be removed on completion of the viaduct construction.

4 Construction Method 3

The third construction method presented is a prestressed precast beam superstructure construction method. This method is similar to Method 1; the protection measures to the Limestone pavement are required for access and craning of the precast elements.

The stages of the construction under this methodology are as follows:

- Stage 1 Site access and enabling works
- Stage 2 Viaduct construction
- Stage 3 Completion of works

4.1 Stage 1 – Site access and enabling and works

As described in **Section 2.2**, the proposed road highlighted in blue in **Figure 2.2** will be constructed first and will be used for site access to construct the viaduct. There will also be limited construction traffic from Bóthar Nua and Sean Bothar as shown in green in **Figure 2.2**. Areas of Limestone pavement will need to be protected temporarily during the construction, using the protection system described in **Section 2.3**. This protection system will be put in place anywhere there is the potential for interaction between construction work and the Limestone pavement and under the footprint of the structure to protect the Limestone pavement in the event of any falling debris or materials during construction.

The precast beam method will require the use of mobile cranes to lift and place the beams in position. An apporpirate temporary platform will be required at discrete locations to position the cranes for lifting of the precast beams. These temporary platforms will be provided with the protection system described above. The proposed development boundary fencing will be erected to isolate the construction area as outlined in **Section 2.2** of this report.

4.2 Stage 2 – Viaduct Construction

The precast beams will be lifted into position in span by span. The precast beams will be placed on the permanent supports and no temporary supports are envisaged within spans. See **Figure 4.1.** Where tall and slender precast beams are used, such as SY beams, the appropriate measures to ensure stability during lifting and concreting of the deck are necessary. This should include the use of permanent drop-heads at the support locations and the necessary temporary works to restrain the beams rotation at the ends. The temporary works are to use the permanent pier as the supporting structure, and not the ground below.

For the span over the Turlough, a tandem lift is expected, whereby two cranes are used, positioned on each side of the Turlough.

As described in **Section 4.1** access to the site would be gained from the proposed road development east and west of the viaduct location and construction traffic such as concrete trucks or cranes would be able to travel to the site location via these

sections of the N6 GCRR. An insitu deck slab will be provided above the precast beams, with the concrete supply being provided by trucks adjacent to the bridge.

This construction methodology avoids any large scale construction works off the Limestone pavement. A netting system will also be used over the Limestone pavement and Turlough area to catch any falling debris or materials. This will ensure that no damage occurs to the Limestone pavement environment beneath.

4.3 Stage 3 – Completion of works

All construction related material will be removed following completion of the works and the Limestone pavement protection system will be removed in the reverse to how it was installed as discussed in **Section 2.5** of this report. The protective netting will also be removed on completion of the viaduct construction.

5 Summary and Conclusions

This report outlines three viable construction options for constructing Menlough Viaduct, Construction Method 1 and Method 3 includes the construction of a protection system over the Limetone pavement and using this as a construction platform and Construction Method 2 utilises the balanced cantilever system.

Although all construction methodologies will affect the vegetation associated with the Limestone pavement habitat, it is not envisaged that there will be any permanent residual impacts to the structural integrity of the Limestone pavement following

GCRR-4.03-6.1.74-001 | Issue 4 | 5 October 2017 | Arup

the construction of the Menlough Viaduct using any of these three methods. The Limestone pavement protection system has sufficient capacity to withstand the predicted construction loading. The geotextile protective layer, as demonstrated, will act as a barrier between the Limestone pavement surface and the sand and granular layers of the protection system. The geogrid has the capability to disperse any point loading and therefore protect the Limestone pavement from cracking or any structural damage. The Turlough will be clear spanned and no construction will take place within this area to avoid any direct impacts on this habitat area.

All of the construction methodologies decribed incorporate the need to protect the structural integrity of the Limestone pavement and to ensure the Turlough is not directly affected by construction works.

6 **References**

Arup. (2016). GCOB-4.04-020-006 Menlough Viaduct Options Report.
 Tensar International. (2010, February). The properties and performance advantages of Tensar TriAx[™] geogrids. Blackburn, Uniked Kingdom.
 Terram. (n.d.). Road and Highways Brochure.